GIAOVIENTHCS.com giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn đội tuyển dự thi học sinh giỏi cấp tỉnh môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Tân Kỳ, tỉnh Nghệ An; kỳ thi được diễn ra vào ngày 25 tháng 10 năm 2022.
Trích dẫn Đề chọn đội tuyển thi HSG tỉnh Toán 9 năm 2022 – 2023 phòng GD&ĐT Tân Kỳ – Nghệ An:
+ Cho x, y là các số nguyên thỏa mãn 2×2 + x = 3y2 + y. Chứng minh x − y; 2x + 2y + 1 và 3x + 3y + 1 đều là các số chính phương.
+ Cho hình vuông ABCD. Điểm M thuộc cạnh AC, kẻ MH vuông góc với AB (H thuộc AB). Kẻ MK vuông góc với BC (K thuộc BC). O là trung điểm của AM. a) Chứng minh: HBO đồng dạng MCH b) Chứng minh: BO/CH c) Xác định vị trí của M trên AC để diện tích ADHK đạt giá trị nhỏ nhất.
+ Cho x; y là các số thực dương thỏa mãn (x + 1)(y + 1) = 4xy. Chứng minh rằng?